Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.992
Filter
1.
Planta ; 259(6): 153, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744752

ABSTRACT

MAIN CONCLUSION: The study evaluates the potential of Spray-Induced Gene Silencing and Host-Induced Gene Silencing for sustainable crop protection against the broad-spectrum necrotrophic fungus Sclerotinia sclerotiorum. Sclerotinia sclerotiorum (Lib.) de Bary, an aggressive ascomycete fungus causes white rot or cottony rot on a broad range of crops including Brassica juncea. The lack of sustainable control measures has necessitated biotechnological interventions such as RNA interference (RNAi) for effective pathogen control. Here we adopted two RNAi-based strategies-Spray-Induced Gene Silencing (SIGS) and Host-Induced Gene Silencing (HIGS) to control S. sclerotiorum. SIGS was successful in controlling white rot on Nicotiana benthamiana and B. juncea by targeting SsPac1, a pH-responsive transcription factor and SsSmk1, a MAP kinase involved in fungal development and pathogenesis. Topical application of dsRNA targeting SsPac1 and SsSmk1 delayed infection initiation and progression on B. juncea. Further, altered hyphal morphology and reduced radial growth were also observed following dsRNA application. We also explored the impact of stable dsRNA expression in A. thaliana against S. sclerotiorum. In this report, we highlight the utility of RNAi as a biofungicide and a tool for preliminary functional genomics.


Subject(s)
Ascomycota , Nicotiana , Plant Diseases , RNA Interference , Ascomycota/physiology , Ascomycota/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Nicotiana/genetics , Nicotiana/microbiology , Mustard Plant/genetics , Mustard Plant/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism , RNA, Double-Stranded/genetics
2.
Physiol Plant ; 176(3): e14311, 2024.
Article in English | MEDLINE | ID: mdl-38715208

ABSTRACT

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.


Subject(s)
CRISPR-Cas Systems , Chlamydomonas reinhardtii , Cytokinins , Disease Resistance , Nicotiana , Plant Diseases , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/immunology , Cytokinins/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Mutation
3.
BMC Plant Biol ; 24(1): 393, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741080

ABSTRACT

BACKGROUND: 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR 1 and 2 (TCP) transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M. Wheeler were Agrobacterium-infiltrated to induce transient expression of SAP11CaPm and changes in the transcriptome were recorded until 5 days post infiltration. RESULTS: The RNA-seq analysis revealed that presence of SAP11CaPm in leaves leads to downregulation of genes involved in defense response and related to photosynthetic processes, while expression of genes involved in energy production was enhanced. CONCLUSIONS: The results indicate that early SAP11CaPm expression might be important for the colonization of the host plant since phytoplasmas lack many metabolic genes and are thus dependent on metabolites from their host plant.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Plant , Nicotiana , Photosynthesis , Phytoplasma , Plant Diseases , Plant Leaves , Nicotiana/genetics , Nicotiana/microbiology , Phytoplasma/physiology , Plant Leaves/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Photosynthesis/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Energy Metabolism/genetics
4.
Sci Rep ; 14(1): 9338, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654120

ABSTRACT

Induced resistance is considered an eco-friendly disease control strategy, which can enhance plant disease resistance by inducing the plant's immune system to activate the defense response. In recent years, studies have shown that lactic acid can play a role in plant defense against biological stress; however, whether lactic acid can improve tobacco resistance to Phytophthora nicotianae, and its molecular mechanism remains unclear. In our study, the mycelial growth and sporangium production of P. nicotianae were inhibited by lactic acid in vitro in a dose-dependent manner. Application of lactic acid could reduce the disease index, and the contents of total phenol, salicylic acid (SA), jasmonic acid (JA), lignin and H2O2, catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased. To explore this lactic acid-induced protective mechanism for tobacco disease resistance, RNA-Seq analysis was used. Lactic acid enhances tobacco disease resistance by activating Ca2+, reactive oxygen species (ROS) signal transduction, regulating antioxidant enzymes, SA, JA, abscisic acid (ABA) and indole-3-acetic acid (IAA) signaling pathways, and up-regulating flavonoid biosynthesis-related genes. This study demonstrated that lactic acid might play a role in inducing resistance to tobacco black shank disease; the mechanism by which lactic acid induces disease resistance includes direct antifungal activity and inducing the host to produce direct and primed defenses. In conclusion, this study provided a theoretical basis for lactic acid-induced resistance and a new perspective for preventing and treating tobacco black shank disease.


Subject(s)
Disease Resistance , Lactic Acid , Nicotiana , Oxylipins , Phytophthora , Plant Diseases , Phytophthora/pathogenicity , Phytophthora/physiology , Nicotiana/microbiology , Nicotiana/immunology , Nicotiana/genetics , Nicotiana/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/prevention & control , Oxylipins/metabolism , Lactic Acid/metabolism , Cyclopentanes/metabolism , Salicylic Acid/metabolism , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant , Abscisic Acid/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Signal Transduction , Hydrogen Peroxide/metabolism
5.
BMC Biol ; 22(1): 100, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679707

ABSTRACT

BACKGROUND: Plant pathogens secrete effector proteins into host cells to suppress immune responses and manipulate fundamental cellular processes. One of these processes is autophagy, an essential recycling mechanism in eukaryotic cells that coordinates the turnover of cellular components and contributes to the decision on cell death or survival. RESULTS: We report the characterization of AVH195, an effector from the broad-spectrum oomycete plant pathogen, Phytophthora parasitica. We show that P. parasitica expresses AVH195 during the biotrophic phase of plant infection, i.e., the initial phase in which host cells are maintained alive. In tobacco, the effector prevents the initiation of cell death, which is caused by two pathogen-derived effectors and the proapoptotic BAX protein. AVH195 associates with the plant vacuolar membrane system and interacts with Autophagy-related protein 8 (ATG8) isoforms/paralogs. When expressed in cells from the green alga, Chlamydomonas reinhardtii, the effector delays vacuolar fusion and cargo turnover upon stimulation of autophagy, but does not affect algal viability. In Arabidopsis thaliana, AVH195 delays the turnover of ATG8 from endomembranes and promotes plant susceptibility to P. parasitica and the obligate biotrophic oomycete pathogen Hyaloperonospora arabidopsidis. CONCLUSIONS: Taken together, our observations suggest that AVH195 targets ATG8 to attenuate autophagy and prevent associated host cell death, thereby favoring biotrophy during the early stages of the infection process.


Subject(s)
Autophagy , Nicotiana , Phytophthora , Plant Diseases , Phytophthora/physiology , Plant Diseases/microbiology , Plant Diseases/parasitology , Nicotiana/microbiology , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Host-Pathogen Interactions
6.
Pestic Biochem Physiol ; 201: 105876, 2024 May.
Article in English | MEDLINE | ID: mdl-38685244

ABSTRACT

Black shank, a devastating disease in tobacco production worldwide, is caused by the oomycete plant pathogen Phytophthora nicotianae. Fluopicolide is a pyridinylmethyl-benzamides fungicide with a unique mechanism of action and has been widely used for controlling a variety of oomycetes such as Plasmopara viticola, Phytophthora infestans, Pseudoperonospora cubensis, P. nicotianae and Bremia lactucae. However, the fluopicolide-resistance risk and molecular basis in P. nicotianae have not been reported. In this study, the sensitivity profile of 141 P. nicotianae strains to fluopicolide was determined, with a mean median effective concentration (EC50) value of 0.12 ± 0.06µg/mL. Five stable fluopicolide-resistant mutants of P. nicotianae were obtained by fungicide adaptation, and the compound fitness index of these resistant mutants were lower than that of their parental isolates. Additionally, cross-resistance tests indicated that the sensitivity of fluopicolide did not correlate with other oomycete fungicides, apart from fluopimomide. DNA sequencing revealed two point mutations, G765E and N769Y, in the PpVHA-a protein in the fluopicolide-resistant mutants. Transformation and expression of PpVHA-a genes carrying G765E and N769Y in the sensitive wild-type isolate confirmed that it was responsible for fluopicolide resistance. These results suggest that P. nicotianae has a low to medium resistance risk to fluopicolide in laboratory and that point mutations, G765E and N769Y, in PpVHA-a are associated with the observed fluopicolide resistance.


Subject(s)
Fungicides, Industrial , Mutation , Nicotiana , Phytophthora , Plant Diseases , Phytophthora/drug effects , Phytophthora/genetics , Nicotiana/microbiology , Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , Benzamides/pharmacology , Pyridines/pharmacology , Drug Resistance, Fungal/genetics
7.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652336

ABSTRACT

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Subject(s)
Arabidopsis , Bacterial Proteins , Nicotiana , Plant Diseases , Reactive Oxygen Species , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Diseases/microbiology , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/metabolism , Reactive Oxygen Species/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Leaves/genetics , Citrus/microbiology , Citrus/genetics , Citrus/metabolism , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Liberibacter/pathogenicity , Liberibacter/physiology , Host-Pathogen Interactions , Plants, Genetically Modified , Plant Proteins/metabolism , Plant Proteins/genetics , Rhizobiaceae/physiology , Disease Resistance/genetics
8.
Plant Physiol ; 195(1): 502-517, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38243831

ABSTRACT

Apple Valsa canker, caused by the ascomycete fungus Valsa mali, employs virulence effectors to disturb host immunity and poses a substantial threat to the apple industry. However, our understanding of how V. mali effectors regulate host defense responses remains limited. Here, we identified the V. mali effector Vm_04797, which was upregulated during the early infection stage. Vm_04797, a secreted protein, suppressed Inverted formin 1 (INF1)-triggered cell death in Nicotiana benthamiana and performed virulence functions inside plant cells. Vm_04797 deletion mutants showed substantially reduced virulence toward apple. The adaptor protein MdAP-2ß positively regulated apple Valsa canker resistance and was targeted and degraded by Vm_04797 via the ubiquitination pathway. The in vitro analysis suggested that Vm_04797 possesses E3 ubiquitin ligase activity. Further analysis revealed that MdAP-2ß is involved in autophagy by interacting with Malus domestica autophagy protein 16 MdATG16 and promoting its accumulation. By degrading MdAP-2ß, Vm_04797 inhibited autophagic flux, thereby disrupting the defense response mediated by autophagy. Our findings provide insights into the molecular mechanisms employed by the effectors of E3 ubiquitin ligase activity in ascomycete fungi to regulate host immunity.


Subject(s)
Ascomycota , Autophagy , Fungal Proteins , Malus , Nicotiana , Plant Diseases , Plant Proteins , Plant Diseases/microbiology , Malus/microbiology , Malus/metabolism , Malus/genetics , Ascomycota/pathogenicity , Ascomycota/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Nicotiana/microbiology , Nicotiana/genetics , Nicotiana/metabolism , Host-Pathogen Interactions , Virulence , Plant Immunity/genetics , Ubiquitination , Disease Resistance/genetics
9.
Plant J ; 118(3): 839-855, 2024 May.
Article in English | MEDLINE | ID: mdl-38271178

ABSTRACT

Arabidopsis thaliana WRKY proteins are potential targets of pathogen-secreted effectors. RESISTANT TO RALSTONIA SOLANACEARUM 1 (RRS1; AtWRKY52) is a well-studied Arabidopsis nucleotide-binding and leucine-rich repeat (NLR) immune receptor carrying a C-terminal WRKY domain that functions as an integrated decoy. RRS1-R recognizes the effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia pseudosolanacearum by direct interaction through its WRKY domain. AvrRps4 and PopP2 were previously shown to interact with several AtWRKYs. However, how these effectors selectively interact with their virulence targets remains unknown. Here, we show that several members of subgroup IIIb of the AtWRKY family are targeted by AvrRps4 and PopP2. We demonstrate that several AtWRKYs induce cell death when transiently expressed in Nicotiana benthamiana, indicating the activation of immune responses. AtWRKY54 was the only cell death-inducing AtWRKY that interacted with both AvrRps4 and PopP2. We found that AvrRps4 and PopP2 specifically suppress AtWRKY54-induced cell death. We also demonstrate that the amino acid residues required for the avirulence function of AvrRps4 and PopP2 are critical for suppressing AtWRKY54-induced cell death. AtWRKY54 residues predicted to form a binding interface with AvrRps4 were predominantly located in the DNA binding domain and necessary for inducing cell death. Notably, one AtWRKY54 residue, E164, contributes to affinity with AvrRps4 and is exclusively present among subgroup IIIb AtWRKYs, yet is located outside of the DNA-binding domain. Surprisingly, AtWRKY54 mutated at E164 evaded AvrRps4-mediated cell death suppression. Taking our observations together, we propose that AvrRp4 and PopP2 specifically target AtWRKY54 to suppress plant immune responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bacterial Proteins , Nicotiana , Plant Diseases , Plant Immunity , Pseudomonas syringae , Arabidopsis/immunology , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Death , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/immunology , Nicotiana/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Immunity/genetics , Pseudomonas syringae/pathogenicity , Ralstonia/pathogenicity , Ralstonia/genetics , Ralstonia solanacearum/pathogenicity , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Mol Plant Microbe Interact ; 37(4): 370-379, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148291

ABSTRACT

Clavibacter bacteria use secreted apoplastic effectors, such as putative serine proteases, for virulence in host plants and for hypersensitive response (HR) induction in nonhost plants. Previously, we have shown that Clavibacter capsici ChpGCc is important for the necrosis development in pepper (Capsicum annuum) leaves. Here, we determine the function of ChpGCc, along with three paralogous proteins, for HR induction in the apoplastic space of a nonhost plant, Nicotiana tabacum. The full-length and signal peptide-deleted (ΔSP) mature forms of all proteins fused with the tobacco PR1b signal sequence were generated. The full-length and ΔSP forms of ChpGCc and only the ΔSP forms of ChpECc and Pat-1Cc, but none of the ChpCCc, triggered HR. Based on the predicted protein structures, ChpGCc carries amino acids for a catalytic triad and a disulfide bridge in positions like Pat-1Cm. Substituting these amino acids of ChpGCc with alanine abolished or reduced HR-inducing activity. To determine whether these residues are important for necrosis development in pepper, alanine-substituted chpGCc genes were transformed into the C. capsici PF008ΔpCM1 strain, which lacks the intact chpGCc gene. The strain with any variants failed to restore the necrosis-causing ability. These results suggest that ChpGCc has a dual function as a virulence factor in host plants and an HR elicitor in nonhost plants. Based on our findings and previous results, we propose Clavibacter apoplastic effectors, such as ChpGCc, Pat-1Cm, Chp-7Cs, and ChpGCm, as hypersensitive response and virulence (Hrv) proteins that display phenotypic similarities to the hypersensitive response and pathogenicity (Hrp) proteins found in gram-negative bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Bacterial Proteins , Capsicum , Clavibacter , Nicotiana , Plant Diseases , Nicotiana/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology , Virulence , Capsicum/microbiology , Clavibacter/genetics , Clavibacter/metabolism , Plant Leaves/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism , Amino Acid Sequence
11.
Mol Plant Microbe Interact ; 37(4): 380-395, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38114195

ABSTRACT

Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Hemiptera , Nicotiana , Animals , Nicotiana/genetics , Nicotiana/microbiology , Insect Proteins/genetics , Insect Proteins/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Solanum lycopersicum/parasitology , Pseudomonas syringae/physiology , Plant Diseases/parasitology , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Fertility/genetics
12.
Mar Genomics ; 72: 101071, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008533

ABSTRACT

Bacillus species have been considered as promising biological control agents due to their excellent antimicrobial ability. Bacillus cereus strain Z4 was isolated from 2000 m deep sea sediments of the Western Pacific Ocean, which possesses significant antifungal activity against Phytophthora nicotianae, the pathogenic fungus of tobacco black shank disease. To reveal the underlying antifungal genetic mechanisms, here, we report the complete genomic sequence of the strain Z4. The genome has one circular chromosome of 5,664,309 bp with a G + C content of 35.31%, 109 tRNAs, and 43 rRNAs. Genomic analysis identified 10 gene clusters related to the biosynthesis of biocontrol active compounds, including bacillibactin, petrobactin, fengycin, and molybdenum cofactor. Meanwhile, 6 gene clusters were responsible for the biosynthesis of metabolites with unknown functions. Strain Z4 also contains a large number of genes encoding carbohydrate-active enzymes and secreted proteins, respectively. The whole genomic analysis of Bacillus cereus Z4 may provide a valuable reference for elucidating its biocontrol mechanism against tobacco black shank.


Subject(s)
Bacillus cereus , Bacillus , Bacillus cereus/genetics , Bacillus cereus/metabolism , Antifungal Agents/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/microbiology , Pacific Ocean , Bacillus/genetics
13.
Appl Microbiol Biotechnol ; 107(24): 7543-7555, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37755511

ABSTRACT

Rebuilding soil healthy microbiota is very important for preventing bacterial wilt. A 3-year-long field trial was conducted in China as follows: T1 (conventional fertilization), T2 (T1 + liming), T3 (T1 + bioorganic fertilizer), and T4 (T2 + bioorganic fertilizer). Fluorescence quantitative PCR and high-throughput sequencing were employed to study the dynamics of Ralstonia solanacearum population, microbial community, and network organizations between bacteria and quality-related variables. After 3 years of bioremediation, the control efficacy of tobacco bacterial wilt reached 61.30% and the occurrence delayed by approximately 40 days in T4, which had the highest tobacco yield and output value. The pathogen population of T4 remained below 106 copies/g soil during the entire growth period. Role-shifts prevailed among the network members. Microbes were unipathically associated with variables in T1 but multiplex in T4. In conclusion, soil bioremediation rebuilds a healthy soil microbiota and forms a more interactive and relevant micro-system, thus effectively controlling tobacco bacterial wilt. KEY POINTS: • This is the first time to effectively bio-control tobacco bacterial wilt in practical production in China, as well as to high-efficiently use the organic waste, thus promoting the organic cycling of the environment. • Soil bioremediation can effectively control soil-borne disease by rebuilding soil healthy microbiota and reducing abundance of pathogenic bacteria, thereby to prevent the soil borne disease occurrence. • After the soil remediated, microbes associated with soil and tobacco characteristics changed from unipathical to multiplex, and the keystone species play different roles compared with the original soil, thus signifying the complexity of multi-species interactions and achieving a closely relevant micro-system, which was ecologically meaningful to the environment.


Subject(s)
Microbiota , Nicotiana , Nicotiana/microbiology , Soil/chemistry , Fertilizers/microbiology , Biodegradation, Environmental , Soil Microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Bacteria/genetics
14.
Appl Microbiol Biotechnol ; 107(21): 6469-6485, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37665370

ABSTRACT

The natural fermentation of cigar tobacco leaves usually utilizes natural temperature and humidity for fermentation. Cigars produced in China are often fermented in winter, and the low environmental temperatures can lead to slow heating of the tobacco stack, affecting the cigar tobacco leaves quality. This study aimed to determine the minimum chamber temperature required to initiate the process of fermentation for cigar tobacco leaves and to explore the impact of temperature on the microbial community of tobacco leaves. Here, the cigar variety "Dexue 1" were subjected to stacking fermentation under three temperature parameters (20 ℃, 27 ℃, 34 ℃). With an increase in environmental temperature, the temperature inside the stack of cigar leaves increased significantly, the protein, total sugar, starch, and total alkaloid content in fermented tobacco leaves decreased, and the aroma components and amino acid content increased. Microbial richness and community diversity associated with fermented tobacco were highest at chamber temperatures of above 27 ℃. The relative abundance of Chryseobacterium and Rhodococcus was significantly negatively correlated with protein, alkaloids, total sugar, and starch, and positively correlated with amino acids and aroma components. Chryseobacterium and Rhodococcus may be responsible for the degradation of macromolecular substances and the conversion of favorable aromatic substances, thus improving the tobacco leaves quality. This study demonstrated that increasing the fermentation chamber temperature above 27 ℃ was conductive to raising the inner-stack temperature, increased microbial diversity and aromatic quality, reduced the strength and irritation, and extremely enhanced the overall quality of fermented cigar tobacco leaves. KEY POINTS: • The environmental temperature of the fermentation chamber has a significant impact on the quality of tobacco • Temperature > 27 ℃ can initiate the process of cigar tobacco leaves fermentation and increase inner-stack temperature and microbial diversity and abundance • Chryseobacterium and Rhodococcus may be related to the degradation of macromolecular substances and the transformation of aromatic substances, thereby improving the quality of tobacco leaves.


Subject(s)
Nicotiana , Tobacco Products , Nicotiana/microbiology , Temperature , Fermentation , Macromolecular Substances , Starch , Sugars
15.
Planta ; 258(3): 60, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37535207

ABSTRACT

MAIN CONCLUSION: Nicotiana attenuata's capacity to interact with arbuscular mycorrhizal fungi influences its intraspecific competitive ability under field and glasshouse conditions, but not its overall community productivity. Arbuscular mycorrhizal (AM) fungi can alter the nutrient status and growth of plants, and they can also affect plant-plant, plant-herbivore, and plant-pathogen interactions. These AM effects are rarely studied in populations under natural conditions due to the limitation of non-mycorrhizal controls. Here we used a genetic approach, establishing field and glasshouse communities of AM-harboring Nicotiana attenuata empty vector (EV) plants and isogenic plants silenced in calcium- and calmodulin-dependent protein kinase expression (irCCaMK), and unable to establish AM symbioses. Performance and growth were quantified in communities of the same (monocultures) or different genotypes (mixed cultures) and both field and glasshouse experiments returned similar responses. In mixed cultures, AM-harboring EV plants attained greater stalk lengths, shoot and root biomasses, clearly out-competing the AM fungal-deficient irCCaMK plants, while in monocultures, both genotypes grew similarly. Competitive ability was also reflected in reproductive traits: EV plants in mixed cultures outperformed irCCaMK plants. When grown in monocultures, the two genotypes did not differ in reproductive performance, though total leaf N and P contents were significantly lower independent of the community type. Plant productivity in terms of growth and seed production at the community level did not differ, while leaf nutrient content of phosphorus and nitrogen depended on the community type. We infer that AM symbioses drastically increase N. attenuata's competitive ability in mixed communities resulting in increased fitness for the individuals harboring AM without a net gain for the community.


Subject(s)
Mycorrhizae , Mycorrhizae/physiology , Plant Roots , Plants , Nicotiana/genetics , Nicotiana/microbiology , Biomass , Fungi/physiology , Soil , Symbiosis
16.
Appl Microbiol Biotechnol ; 107(18): 5789-5801, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37458766

ABSTRACT

Metabolic enzyme activity and microbial composition of the air-curing and fermentation processes determine the quality of cigar tobacco leaves (CTLs). In this study, we reveal the evolution of the dominant microorganisms and microbial community structure at different stages of the air-curing and fermentation processes of CTLs. The results showed that the changes in metabolic enzymes occurred mainly during the air-curing phase, with polyphenol oxidase (PPO) being the most active at the browning phase. Pseudomonas, Bacteroides, Vibrio, Monographella, Bipolaris, and Aspergillus were the key microorganisms in the air-curing and fermentation processes. Principal coordinate analysis revealed significant separation of microbial communities between the air-curing and fermentation phases. Redundancy analysis showed that bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota were correlated with enzyme activity and temperature and humidity. Bacteria mainly act in sugar metabolism, lipid metabolism, and amino acid metabolism, while fungi mainly degrade lignin, cellulose, and pectin through saprophytic action. Spearman correlation network analysis showed that Firmicutes, Proteobacteria, and Actinobacteria were the key bacterial taxa, while Dothideomycetes, Sordariomycetes, and Eurotiomycetes were the key fungal taxa. This research provides the basis for improving the quality of cigars by improving the air-curing and fermentation processes. KEY POINTS: • Changes in POD and PPO activity control the color change of CTLs at the air-curing stage. • Monographella, Aspergillus, Pseudomonas, and Vibrio play an important role in air-curing and fermentation. • Environmental temperature and humidity mainly affect the fermentation process, whereas bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota are associated with enzyme activity and temperature and humidity.


Subject(s)
Ascomycota , Tobacco Products , Nicotiana/microbiology , Fermentation , Bacteria , Proteobacteria , Firmicutes , Acidobacteria , Bacteroidetes , Plant Leaves/microbiology
17.
Mol Plant Pathol ; 24(9): 1154-1167, 2023 09.
Article in English | MEDLINE | ID: mdl-37278116

ABSTRACT

The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R. solanacearum elicitors, including specific responses triggered by pathogen-associated molecular patterns and secreted effectors. RipD localized in different subcellular compartments in plant cells, including vesicles, and its vesicular localization was enriched in cells undergoing R. solanacearum infection, suggesting that this specific localization may be particularly relevant during infection. Among RipD-interacting proteins, we identified plant vesicle-associated membrane proteins (VAMPs). We also found that overexpression of Arabidopsis thaliana VAMP721 and VAMP722 in Nicotiana benthamiana leaves promoted resistance to R. solanacearum, and this was abolished by the simultaneous expression of RipD, suggesting that RipD targets VAMPs to contribute to R. solanacearum virulence. Among proteins secreted in VAMP721/722-containing vesicles, CCOAOMT1 is an enzyme required for lignin biosynthesis, and mutation of CCOAOMT1 enhanced plant susceptibility to R. solanacearum. Altogether our results reveal the contribution of VAMPs to plant resistance against R. solanacearum and their targeting by a bacterial effector as a pathogen virulence strategy.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ralstonia solanacearum , R-SNARE Proteins/genetics , R-SNARE Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology , Plants/metabolism , Nicotiana/microbiology , Plant Immunity/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
18.
Mol Plant Pathol ; 24(10): 1312-1318, 2023 10.
Article in English | MEDLINE | ID: mdl-37310613

ABSTRACT

The bacterial wilt disease caused by soilborne bacteria of the Ralstonia solanacearum species complex (RSSC) threatens important crops worldwide. Only a few immune receptors conferring resistance to this devastating disease are known so far. Individual RSSC strains deliver around 70 different type III secretion system effectors into host cells to manipulate the plant physiology. RipE1 is an effector conserved across the RSSC and triggers immune responses in the model solanaceous plant Nicotiana benthamiana. Here, we used multiplexed virus-induced gene silencing of the nucleotide-binding and leucine-rich repeat receptor family to identify the genetic basis of RipE1 recognition. Specific silencing of the N. benthamiana homologue of Solanum lycopersicoides Ptr1 (confers resistance to Pseudomonas syringae pv. tomato race 1) gene (NbPtr1) completely abolished RipE1-induced hypersensitive response and immunity to Ralstonia pseudosolanacearum. The expression of the native NbPtr1 coding sequence was sufficient to restore RipE1 recognition in Nb-ptr1 knockout plants. Interestingly, RipE1 association with the host cell plasma membrane was necessary for NbPtr1-dependent recognition. Furthermore, NbPtr1-dependent recognition of RipE1 natural variants is polymorphic, providing additional evidence for the indirect mode of activation of NbPtr1. Altogether, this work supports NbPtr1 relevance for resistance to bacterial wilt disease in Solanaceae.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/genetics , Nicotiana/microbiology , Ralstonia solanacearum/genetics , Pseudomonas syringae/genetics , Cell Membrane/metabolism , Plant Diseases/microbiology , Bacterial Proteins/metabolism
19.
Plant Commun ; 4(6): 100640, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37349986

ABSTRACT

Bacterial wilt disease caused by several Ralstonia species is one of the most destructive diseases in Solanaceae crops. Only a few functional resistance genes against bacterial wilt have been cloned to date. Here, we show that the broadly conserved type III secreted effector RipY is recognized by the Nicotiana benthamiana immune system, leading to cell death induction, induction of defense-related gene expression, and restriction of bacterial pathogen growth. Using a multiplexed virus-induced gene-silencing-based N. benthamiana nucleotide-binding and leucine-rich repeat receptor (NbNLR) library, we identified a coiled-coil (CC) nucleotide-binding and leucine-rich repeat receptor (CNL) required for recognition of RipY, which we named RESISTANCE TO RALSTONIA SOLANACEARUM RIPY (RRS-Y). Genetic complementation assays in RRS-Y-silenced plants and stable rrs-y knockout mutants demonstrated that RRS-Y is sufficient to activate RipY-induced cell death and RipY-induced immunity to Ralstonia pseudosolanacearum. RRS-Y function is dependent on the phosphate-binding loop motif of the nucleotide-binding domain but independent of the characterized signaling components ENHANCED DISEASE SUSCEPTIBILITY 1, ACTIVATED DISEASE RESISTANCE 1, and N REQUIREMENT GENE 1 and the NLR helpers NB-LRR REQUIRED FOR HR-ASSOCIATED CELL DEATH-2, -3, and -4 in N. benthamiana. We further show that RRS-Y localization at the plasma membrane is mediated by two cysteine residues in the CC domain and is required for RipY recognition. RRS-Y also broadly recognizes RipY homologs across Ralstonia species. Lastly, we show that the C-terminal region of RipY is indispensable for RRS-Y activation. Together, our findings provide an additional effector/receptor pair system to deepen our understanding of CNL activation in plants.


Subject(s)
Nicotiana , Ralstonia solanacearum , Nicotiana/microbiology , Plant Proteins/metabolism , Leucine , Disease Resistance/genetics , Ralstonia solanacearum/metabolism , Cell Membrane/metabolism , Nucleotides
20.
Int J Biol Macromol ; 241: 124580, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37100321

ABSTRACT

The exploration of biopolymer-based materials to avoid hazardous chemicals in agriculture has gained enormous importance for sustainable crop protection. Due to its good biocompatibility and water solubility, carboxymethyl chitosan (CMCS) has been widely applied as a pesticide carrier biomaterial. However, the mechanism by which carboxymethyl chitosan-grafted natural product nanoparticles induce tobacco systemic resistance against bacterial wilt remains largely unknown. In this study, water-soluble CMCS-grafted daphnetin (DA) nanoparticles (DA@CMCS-NPs) were successfully synthesized, characterized, and assessed for the first time. The grafting rate of DA in CMCS was 10.05 %, and the water solubility was increased. In addition, DA@CMCS-NPs significantly increased the activities of CAT, PPO and SOD defense enzymes, activated the expression of PR1 and NPR1, and suppressed the expression of JAZ3. DA@CMCS-NPs could induce immune responses against R. solanacearum in tobacco, including increases in defense enzymes and overexpression of pathogenesis-related (PR) proteins. The application of DA@CMCS-NPs effectively suppressed the development of tobacco bacterial wilt in pot experiments, and the control efficiency was as high as 74.23 %, 67.80 %, 61.67 % at 8, 10, and 12 days after inoculation. Additionally, DA@CMCS-NPs has excellent biosafety. Therefore, this study highlighted the application of DA@CMCS-NPs in manipulating tobacco to generate defense responses against R. solanacearum, which can be attributed to systemic resistance.


Subject(s)
Chitosan , Nanoparticles , Ralstonia solanacearum , Chitosan/pharmacology , Chitosan/chemistry , Nanoparticles/chemistry , Nicotiana/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...